
Research Statement Ido Nachum
I enjoy understanding and investigating nature across the scientific spectrum and sharing my enthusiasm with

others through collaborative research and teaching. My career path is a representation of this affection. I started
as an aerospace engineer, worked in RAFAEL Advanced Defense Systems for more than five years (as part of my
military service) while completing math undergrad courses, and then worked on a thesis towards an MSc in pure
mathematics [2]. During my PhD [3], I studied theoretical questions at the intersection between machine learning
and information theory (Section 1). Furthermore, I am interested in mathematical questions arising from artificial
or biological neural computation (Section 2). In the future, I intend to continue to walk this path between theory
and practice while absorbing new and intriguing ideas from both theoreticians and practitioners (Section 3).

1 Past Research
Machine Learning through the Lens of Information Theory
Machine learning is quickly permeating many aspects of our lives. Examples are abundant: image and speech
recognition, autonomous driving, medical diagnosis, spam and online fraud detection, and many more. Machine
learning enables a computer to learn from experience, as a child does, instead of explicitly programming it to
perform a specific task.

Information theory is already an inseparable part of our life. It allows efficient storage (compression) and com-
munication of information. For example, ZIP files support lossless data compression, and wireless communication
uses error-correcting and error-detecting codes. Information theory studies what are the fundamental limits of
those tasks and how to achieve them.

Machine learning and information-theoretic tasks are in some sense equivalent since both involve identifying
patterns and regularities in data. To recognize an elephant, a child (or a neural network) observes the repeating
pattern of big ears, a trunk, and grey skin. To compress a book, a compression algorithm searches for highly
repeating letters or words. So the high-level question that guided my PhD research is

When is learning equivalent to compression?
More precisely, how rigorous notions of learning are related to rigorous notions of compression? Variants of

this question were studied extensively over the years. In many contexts, the ability to compress implies learnability.
Here is a partial list of examples: sample compression schemes [29, 32], Occam’s razor [15], minimum description
length [33, 22], and differential privacy [19, 18, 12, 34, 13].

In the typical learning setting, an algorithm receives input comprising i.i.d. pairs {(x1, f(x1)), ..., (xn, f(xn))} of
training data of a function f , and returns output—a hypothesis that should fit the samples. In [4], I measured the
learning algorithm’s compression using information theory with the quantity I(input; output), the mutual infor-
mation between the training data and the output hypothesis of the learning algorithm, measured in bits. Roughly
speaking, this quantity measures the number of bits the algorithm retains from the training data or howmany bits
of information are revealed by the algorithm (a measure of privacy). Here are my results under this formal setting.
Generalization bound. The generalization error is a key notion in machine learning. It is the difference between
the empirical error (training data error) and the true error (unseen data error). Under this formal setting, in [4] my
collaborators and I showed that compression implies learning, namely, the generalization error is bounded from above
by O(I(input; output)). This result highlights a simple rule of thumb for designing learning algorithms: construct
algorithms that have a small empirical error but at the same time reveal little information about its input.
Information complexity of learning. We showed that compression imply learning. It is therefore natural to ask
whether the opposite holds true as well, namely, does learning imply compression? In [4, 5, 6, 11], my collaborators
and I showed that the answer depends on the definitions of learning and compression. In particular— In [4] we
answer this question in the negative for the probably approximately correct (PAC) learnable [37] class of threshold
functions HN = {1x≥k | k ∈ [N ]} ⊂ {0, 1}[N ]. To that end, we show that the information complexity is IC(H) =
Θ(log logN), meaning that, for any learning algorithm, there exists aworst-case scenario that requires the algorithm
to use Ω(log logN)-bits of information. Since N is arbitrary (it does not affect how well the class can be learned),
theworst-case information complexity is unbounded. Thus, learning does not imply compression in theworst case.

More generally, we show in [5] that, for anyN and d, there exists a space with |X | = N and a classH ⊂ {0, 1}X
of VC dimension dwith IC(H) = Θ(d log logN).

In contrast, I show in [6] that for every learnable class of VC dimension d, there exists a learning algorithm
that retains O(d)-bits of information in the average case. That is, in every scenario, most functions will not require
revealing many bits to learn them. Learning implies compression in the average-case, or equivalently, the average-
case information complexity for VC classes is finite.
Online learning and information complexity. The complexity measure for online learning is captured by the
Littlestone dimension [28]. For example, the simple class of thresholds HN has logN Littlestone dimension (un-
bounded), although its VCdimension is one. In [11], we showed that a binary hypotheses class has finite Littlestone
dimension (combinatorial definition) if and only if it is learnable with finite information complexity (probabilistic
definition). This is reminiscent of the equivalence in [14] between the VC dimension (combinatorial definition)
and PAC learning (probabilistic definition).



2 Current Research
Computation with Artificial Neural Networks
The following summarizes my research on neural computation. In this line of research, I movedmethodically from
the most fundamental building block of a single neuron (which can be analyzed in great detail) to higher levels of
complexity: larger networks with non-linear activation functions, convolutional neural networks at initialization,
and finally the training process and how it affects generalization.

A single neuron
Neural networks are intricate mathematical objects to study. That is why I first investigated the perceptron algo-
rithm, which is an abstraction of a biological neuron that was introduced in the 1950s by Rosenblatt [35], and has
been extensively studied in many works (see the survey [31]).

Given a linearly separable binary labeled dataset of vectors, the perceptron algorithm outputs a separating
hyperplane between two classes of vectors. However, if we assume the measurements of the data points are noisy,
there is no guarantee that the algorithm’s output will still classify the actual data vectors correctly. The maximal
distortion the vectorsmay be perturbed by such that the datasetwould remain linearly separable is called themargin
of the dataset.

In [7], my collaborators and I identified compression properties of the perceptron and suggested improvements
and modifications to the algorithm that make it less sensitive to noise. That is, the algorithm outputs a hyperplane
with an almost optimal margin: the hyperplane is as far away as possible from all vectors in the dataset. Further-
more, I extended and implemented this modification to a general neural network. For a network with a single
hidden layer containing 800 neurons and over the MNIST dataset of handwritten digits, I achieved a test error of
1.35% versus a test error of 1.6% for a typical training with cross-entropy loss [27].

Neural networks initialization
The performance of neural networks is susceptible to the choice of architecture and initialization. I demonstrated
this in [9] for the class of symmetric functions

Sn =
{ n∑

i=0

ai · 1|x|=i | a1, . . . , an ∈ {±1}
}
,

where x ∈ {0, 1}n and |x| =
∑

i xi. The functions in this class are invariant under arbitrary permutations of
the input coordinates. The parity function π(x) = (−1)|x| and the majority function are well-known examples of
symmetric functions.

For this class, a careful choice of initialization for a fully connected network with one hidden layer can make
the difference between success and failure in learning. This difference follows in three parts. First, the functions in
this class can all be represented by a neural network with one hidden layer, so a solution exists in the parameter
space. Second, for random initialization, which is how neural networks are typically initialized, the network fails
to learn most functions from the class. Third, for a specialized initialization, stochastic gradient descent reaches
zero empirical error and achieves a small test error. And to emphasize, the small test error is achieved for an over-
parameterized network (the number of free parameters greatly exceeds the number of available samples). This
counter-intuitive behavior is what makes neural networks so remarkable.

Since the initialization plays such a pivotal role, and conceptually, neural networks are successful because each
subsequent layer allows for a better representation of the input space until linear separability is achieved, I asked
in [10] the following question:

How does the geometric representation of a dataset change after the application
of each randomly initialized layer of a neural network?

The Johnson–Lindenstrauss lemma [26] provides an answer for a linear fully connected network layer: With
high probability over the weights of the network W , the geometry roughly stays the same, that is ⟨W · x,W · y⟩ ≈
⟨x, y⟩. Similarily, [16, 21, 17] provided the following answer for a fully connected network layer with the ReLU
(:= max{0, x}) activation: for vectors x and y with cosine similarity ρ := ⟨x,y⟩

∥x∥∥y∥ , the output cosine similarity
⟨ReLU(W ·x),ReLU(W ·y)⟩

∥ReLU(W ·x)∥∥ReLU(W ·y)∥ is concentrated around the ReLU dual activation:

R̂eLU(ρ) :=
1

π
(
√

1− ρ2 +
(
π − cos−1(ρ)

)
ρ). (1)

In [10], my collaborators and I extended these results for convolutional neural networks (CNN) with the ReLU
activation. This setting is intricate since the output similarity ρout :=

⟨ReLU(W∗x),ReLU(W∗y)⟩
∥ReLU(W∗x)∥∥ReLU(W∗y)∥ (∗ := convolution) is

no longer only a function of the input similarity ρ. See Figure 1: For natural images (red scatter plot in Figure 1a),
the output similarity equals the input similarity, so the network behaves as a linear fully connected network; for
Gaussian data (red scatter plot in Figure 1b), the output similarity follows the ReLU dual activation (yellow curve),
so the network behaves as a ReLU fully connected network.



In [10], we explained this behavior: (1) Extension for the Johnson–Lindenstrauss lemma for linear convolutional
networks: With high probability, ⟨W ∗x,W ∗y⟩ ≈ ⟨x, y⟩. (2) Tight lower and upper bounds for the output similarity
max{ρ, 0} ≤ ρout ≤ 1+ρ

2 (purple and blue curves in Figure 1). (3) For Gaussian data, ρout is indeed concentrated
around the ReLU dual activation. (4) For a model for natural images, a ReLU CNN behaves as a linear network
ρout ≈ ρ, the CNN preserves the geometry of the dataset.
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Figure 1: Input and output cosine similarities of a single randomly initialized convolutional layer with 100 filters. Each red
circle in the figures represents a random pair of images chosen from the corresponding dataset.

Noise and neural network training
Neural networks can approximatewell any continuous function (assuming a sufficient number of adjustableweights),
and their training process produces solutions with zero training error. Those properties combined were typically
considered a hindrance to good generalization, yet, in practice, the networks generalize well. That is why it is likely
that the training process has some form of implicit regularization.

I focused in [1] on the role played by label noise in such implicit regularization. When label noise is applied, the
true label is changed with probability p to a uniformly random label at each iteration during training. With p = 0,
there is no noise, and with p = 1, the label is uniform.

Why would it make sense to add label noise on carefully collected data?
The answer is subtle since noise may cause difficulties in learning, and yet, noise can sometimes improve the

accuracy of the model; label smoothing [36] is a canonical example. In [1], my collaborators and I demonstrated
that label noise drives the network to a sparse solution in the following sense: for a typical input, a small fraction
of neurons are active, and the firing pattern of the hidden layer is sparser.
Definition 1 Let N(x) = W2 · ReLU(W1 · x+ B1) + B2 be a fully connected network with one hidden layer. For x in the
dataset, the number of active neurons is AN (x) = |{i | wi · x+ bi > 0}| where (wi, bi) correspond to the weights of neuron i
in the hidden layer. The typical number of active neurons is ExAN (x), where x is uniformly distributed in the dataset.

In fact, an appropriate amount of label noise not only sparsifies the network activity but also reduces the test
error. For example, see Figure 2: label noise induces a substantial improvement, 21% test error vs. 49% test error.
For a theoretical analysis of such sparsification mechanisms, we focused on the extremal case of p = 1. In this case,
the network withers, but surprisingly, in different ways that depend on the learning rate and the presence of bias
weights, withweights either vanishing or neurons ceasing to fire (no activity of neurons= absolute sparsity). Then,
a careful application of the intermediate value theorem shows that changing p tunes the activity of the network’s
hidden layer between no activity at p = 1 and the baseline activity at p = 0.
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Figure 2: Learning the hypercube indicator function 1∥x∥∞=1. The input dimension is d = 60, there are 4d neurons in the
hidden layer and the learning rate is h = 1/d.



3 Future Research
Here are two related themes that I set for my research. In each, I briefly present my vision and long-term goal,
followed by concrete initial research steps.

From observation tomathematics. I like exploringmathematical concepts that stem from real-life observations.
Such observations can inspire new mathematical language that may change our scientific perspective. With that
motivation, I transitioned from pure mathematics in my MSc to learning theory during my PhD. The transition
was initiated by a fascinating lecture by May-Britt Moser in 2013 on her discovery of grid cells [23] (which led to
her winning the Nobel Prize in 2014). Grid cells are neurons in the entorhinal cortex and are part of the brain’s
“navigation system” (see Figure 3). Can new mathematical theories be derived to explain such a geometrical
phenomenon? As a long-term goal, I would like to retrace my steps and use my engineering and mathematical
knowledge to address questions that stem from such neurological discoveries.

Figure 3: Agrid cell from the cortex of the rat brain. The black trace shows the trajectory of a foraging rat in part of a 1.5mdiam-
eter wide square enclosure. Spike locations of the grid cell are superimposed in red on the trajectory. Each red dot corresponds
to one spike. Blue equilateral triangles have been drawn on top of the spike distribution to illustrate the regular hexagonal
structure of the grid pattern.

Over a shorter time frame, I take inspiration from the geometrical structure that arises in artificial neurons. My
work in [10] is an example of such research. There, I rigorously explain Figures 1a and 1b that are a product of
simple numerical experiments with nevertheless an intriguing outcome. Different types of datasets are embedded
substantially differently through a CNN at initialization. Since a CNN is only one of many types of neural net-
work architectures, many empirical patterns are waiting to be discovered, accompanied by follow-up geometrical
questions. It is fruitful ground for research. An immediate example is explaining the behavior of a neural network
at initialization when batch normalization [24] is added between each layer. I want to explain why after enough
layers with batch normalization, the representation of the input dataset induced by the deep layers becomes almost
orthogonal, as observed empirically.

Strengthening the connections between theory and practice. So often, theoretical work is initially motivated by
real-life problems but slowly loses track of the original problem it was set to help and solve. My long-term goal is
to bridge such gaps between theory and practice. Such a gap exists in the study of neural networks. For example,
many published theoretical works focus on neural networks with no non-linearity. However, such linear neural
networks can only solve linear problems. So it is unlikely to translate such works for practical gains.

This divide is most pronounced in our understanding of the generalization power of neural networks. This
is evidenced in [25], where the authors survey and show that almost all generalization bounds are vacuous1 and
do not correlate well with generalization, so new complexity measures are required outside the scope of classical
statistical learning.

Therefore, my research will focus on a closely-knit empirical and theoretical search for measures that predict
the generalization of neural networks well. As a promising initial step, I will start with the PAC-Bayes bound [30],
which is closely connected to the mutual information generalization bound presented in Section 1. PAC-Bayes
is the only framework that proved to be non-vacuous in [25], an approach pioneered in [20]. In broad strokes,
the PAC-Bayes framework predicts that neural networks generalize well because of a combination of two reasons:
(1) the solution found is not too far away from the initialization. (2) the solution found is a flat minimum, that is,
a minimum surrounded by a large volume of solutions with small empirical error.

Accordingly, my first step would be empirically measuring which of the two properties correlates better with
generalization. Naturally, this empirical approach can be extended to other geometrical quantities not necessarily
associated with established generalization bounds, such as activation sparsity, as in my work in [1]. A strong
correlation between one of the new generalization measures will then lead the theoretical research in the right
direction and help us design better networks.

1For example, plugging the network’s parameters into the bound would yield the vacuous statement that the generalization error of the
trained network will exceed 1234% (≫ 1) with probability of at most 123 (≫ 1).
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